
Bit Fields in C

In C, we can specify the size (in bits) of the structure and union members. The idea of

bit-field is to use memory efficiently when we know that the value of a field or group

of fields will never exceed a limit or is within a small range. C Bit fields are used

when the storage of our program is limited.

Need of Bit Fields in C

 Reduces memory consumption.

 To make our program more efficient and flexible.

 Easy to Implement.

Declaration of C Bit Fields
Bit-fields are variables that are defined using a predefined width or size. Format and

the declaration of the bit-fields in C are shown below:

Syntax of C Bit Fields

struct

{

 data_type member_name : width_of_bit-field;
};

where,

 data_type: It is an integer type that determines the bit-field value which is to be

interpreted. The type may be int, signed int, or unsigned int.

 member_name: The member name is the name of the bit field.

 width_of_bit-field: The number of bits in the bit-field. The width must be less

than or equal to the bit width of the specified type.

Applications of C Bit Fields
 If storage is limited, we can go for bit-field.

 When devices transmit status or information encoded into multiple bits for this

type of situation bit-field is most efficient.

 Encryption routines need to access the bits within a byte in that situation bit-field

is quite useful.

Example of C Bit Fields
In this example, we compare the size difference between the structure that does not

specify bit fields and the structure that has specified bit fields.

Structure Without Bit Fields

Consider the following declaration of date without the use of bit fields.

// C Program to illustrate the structure without bit field

#include <stdio.h>

// A simple representation of the date

struct date {

 unsigned int d;

 unsigned int m;

 unsigned int y;

};

int main()

{

 // printing size of structure

 printf("Size of date is %lu bytes\n",

 sizeof(struct date));

 struct date dt = { 31, 12, 2014 };

 printf("Date is %d/%d/%d", dt.d, dt.m, dt.y);

}

Output
Size of date is 12 bytes

Date is 31/12/2014

The above representation of ‘date’ takes 12 bytes on a compiler whereas an unsigned

int takes 4 bytes. Since we know that the value of d is always from 1 to 31, and the

value of m is from 1 to 12, we can optimize the space using bit fields.

Structure with Bit Field

The below code defines a structure named date with a single member month. The

month member is declared as a bit field with 4 bits.

struct date

{

// month has value between 0 and 15,

// so 4 bits are sufficient for month variable.

 int month : 4;

};

However, if the same code is written using signed int and the value of the fields goes

beyond the bits allocated to the variable, something interesting can happen.

Below is the same code but with signed integers:

 C

// C program to demonstrate use of Bit-fields

#include <stdio.h>

// Space optimized representation of the date

struct date {

 // d has value between 0 and 31, so 5 bits

 // are sufficient

 int d : 5;

 // m has value between 0 and 15, so 4 bits

 // are sufficient

 int m : 4;

 int y;

};

int main()

{

 printf("Size of date is %lu bytes\n",

 sizeof(struct date));

 struct date dt = { 31, 12, 2014 };

 printf("Date is %d/%d/%d", dt.d, dt.m, dt.y);

 return 0;

}

Output
Size of date is 8 bytes

Date is -1/-4/2014

Explanation

The output comes out to be negative. What happened behind is that the value 31 was

stored in 5 bit signed integer which is equal to 11111. The MSB is a 1, so it’s a

negative number and you need to calculate the 2’s complement of the binary number

to get its actual value which is what is done internally.

By calculating 2’s complement you will arrive at the value 00001 which is equivalent

to the decimal number 1 and since it was a negative number you get a -1. A similar

thing happens to 12 in which case you get a 4-bit representation as 1100 and on

calculating 2’s complement you get the value of -4.

#include <stdio.h>

struct test {

 // Unsigned integer member x

 unsigned int x;

 // Bit-field member y with 33 bits

 unsigned int y : 33;

 // Unsigned integer member z

 unsigned int z;

};

int main()

{

 // Print the size of struct test

 printf("%lu", sizeof(struct test));

 return 0;

}

	Bit Fields in C
	Need of Bit Fields in C
	Declaration of C Bit Fields
	Syntax of C Bit Fields

	Applications of C Bit Fields
	Example of C Bit Fields
	Structure Without Bit Fields
	Structure with Bit Field

